1,892 research outputs found

    Kaon condensation at finite temperature

    Get PDF
    A new formulation is presented to treat thermal fluctuations around the kaon condensate, based on chiral symmetry. Separating the zero mode from the beginning we perform the imaginary-time path integral to the one loop to get the thermodynamic potential at finite temperature. The role of the Goldstone mode in the kaon condensed phase is elucidated in relation to the equation of state.Comment: 14 pages, 2 postscript figures, Phys. Lett. B(1998) in pres

    Inhalation Exposures to Particulate Matter and Carbon Monoxide during Ethiopian Coffee Ceremonies in Addis Ababa: A Pilot Study

    Get PDF
    The unique Ethiopian cultural tradition of the coffee ceremony increases inhalation exposures to combustion byproducts. This pilot study evaluated exposures to particulate matter and carbon monoxide in ten Addis Ababa homes during coffee ceremonies. For coffee preparers the geometric mean (57 Όg/m3) and median (72 Όg/m3) contributions to an increase in a 24-hour time-weighted average exposure were above World Health Organization (WHO) guidelines. At 40% of the study sites the contribution to the 24-hour average exposure was greater than twice the WHO guideline. Similar exposure increases existed for ceremony participants. Particulate matter concentrations may be related to the use of incense during the ceremony. In nearly all homes the WHO guideline for a 60-minute exposure to carbon monoxide was exceeded. Finding control measures to reduce these exposures will be challenging due to the deeply engrained nature of this cultural practice and the lack of availability of alternative fuels

    On the minimum and maximum mass of neutron stars and the delayed collapse

    Get PDF
    The minimum and maximum mass of protoneutron stars and neutron stars are investigated. The hot dense matter is described by relativistic (including hyperons) and non-relativistic equations of state. We show that the minimum mass (∌\sim 0.88 - 1.28 M_{\sun}) of a neutron star is determined by the earliest stage of its evolution and is nearly unaffected by the presence of hyperons. The maximum mass of a neutron star is limited by the protoneutron star or hot neutron star stage. Further we find that the delayed collapse of a neutron star into a black hole during deleptonization is not only possible for equations of state with softening components, as for instance, hyperons, meson condensates etc., but also for neutron stars with a pure nucleonic-leptonic equation of state.Comment: 6 pages, 4 figures, using EDP Siences Latex A&A style, to be published in A&

    Making waves in education

    Get PDF
    Making Waves in Education is a book of a collaborative nature, being a collection of chapters written by undergraduates studying B.A. Hons in Education at the Universities of Plymouth and York. Thirteen chapters, each from a different student, cover topics from learning theories to sex education, home education and autism. The chapters are well-organised and written, and they cover key topics in an accessible and thoughtful way. The chapters are generally well - referenced and present critical and balanced arguments. Many use hard statistics in an effective way to back up their points and all include bibliographies as indeed one expects from a serious publication. The collection therefore addresses itself to a wide readership of anyone interested in education, and students and teachers/trainers in HE in particula

    Microscopic study of neutrino trapping in hyperon stars

    Full text link
    Employing the most recent parametrization of the baryon-baryon interaction of the Nijmegen group, we investigate, in the framework of the Brueckner--Bethe--Goldstone many-body theory at zero temperature, the influence of neutrino trapping on the composition, equation of state, and structure of neutron stars, relevant to describe the physical conditions of a neutron star immediately after birth (protoneutron star). We find that the presence of neutrinos changes significantly the composition of matter delaying the appearance of hyperons and making the equation of state stiffer. We explore the consequences of neutrino trapping on the early evolution of a neutron star and on the nature of the final compact remnant left by the supernova explosion.Comment: Astronomy & Astrophysics, 399, 687-693 (2003

    Neutrino Rates in Color Flavor Locked Quark Matter

    Get PDF
    We study the weak interaction rates involving Goldstone bosons in the Color Flavor Locked (CFL) quark matter. Neutrino mean free path and the rate of energy loss due to neutrino emission in a thermal plasma of CFL pions and kaons is calculated. We find that in addition to neutrino scattering off thermal mesons, novel Cherenkov like processes wherein mesons are either emitted or absorbed contribute to the neutrino opacity. Lack of Lorentz invariance in the medium and loss of rotational invariance for processes involving mesons moving relative to the medium allow for novel processes such as π0→ΜΜˉ\pi^0 \to \nu \bar{\nu} and e−π+→Μee^- \pi^+ \to \nu_e. We explore and comment on various astrophysical implications of our finding.Comment: 21 pages, 4 figure

    Dileptons and Direct Photons at SPS

    Full text link
    The study of dilepton and direct photon emission was one of the main topics of the experimental program at the SPS devoted to the search of signals for QGP formation. Three generations of experiments, Helios-3, NA38/NA50, CERES and NA60 measured e+e- or mu+mu- production in various colliding systems and at different energies. While lepton pair production in p-A collisions was found to be reasonably well described by the expected sources, all experiments observed in nuclear collisions an excess of the yield above the extrapolation from p-A. As a result of this joint experimental effort we have currently a large amount of information characterizing this excess: its mass spectrum over the full range from 0.2 GeV/c^2 up to the J/psi, its transverse momentum spectra including their mass dependence, its angular distributions, its dependence on collision centrality over the complete range etc. Putting together all this information leads to the conclusion that what we observe is the long-sought thermal radiation from the fireball.Comment: 8 pages, 6 figures - To appear in the conference proceedings for Quark Matter 2009, March 30 - April 4, Knoxville, Tennesse

    Kaon Zero-Point Fluctuations in Neutron Star Matter

    Get PDF
    We investigate the contribution of zero-point motion, arising from fluctuations in kaon modes, to the ground state properties of neutron star matter containing a Bose condensate of kaons. The zero-point energy is derived via the thermodynamic partition function, by integrating out fluctuations for an arbitrary value of the condensate field. It is shown that the vacuum counterterms of the chiral Lagrangian ensure the cancellation of divergences dependent on Ό\mu, the charge chemical potential, which may be regarded as an external vector potential. The total grand potential, consisting of the tree-level potential, the zero-point contribution, and the counterterm potential, is extremized to yield a locally charge neutral, beta-equilibrated and minimum energy ground state. In some regions of parameter space we encounter the well-known problem of a complex effective potential. Where the potential is real and solutions can be obtained, the contributions from fluctuations are found to be small in comparison with tree-level contributions.Comment: 40 pages RevTeX, 3 epsf figure

    Neutrino Interactions in Hot and Dense Matter

    Get PDF
    We study the charged and neutral current weak interaction rates relevant for the determination of neutrino opacities in dense matter found in supernovae and neutron stars. We establish an efficient formalism for calculating differential cross sections and mean free paths for interacting, asymmetric nuclear matter at arbitrary degeneracy. The formalism is valid for both charged and neutral current reactions. Strong interaction corrections are incorporated through the in-medium single particle energies at the relevant density and temperature. The effects of strong interactions on the weak interaction rates are investigated using both potential and effective field-theoretical models of matter. We investigate the relative importance of charged and neutral currents for different astrophysical situations, and also examine the influence of strangeness-bearing hyperons. Our findings show that the mean free paths are significantly altered by the effects of strong interactions and the multi-component nature of dense matter. The opacities are then discussed in the context of the evolution of the core of a protoneutron star.Comment: 41 pages, 25 figure

    Negative Kaons in Dense Baryonic Matter

    Get PDF
    Kaon polarization operator in dense baryonic matter of arbitrary isotopic composition is calculated including s- and p-wave kaon-baryon interactions. The regular part of the polarization operator is extracted from the realistic kaon-nucleon interaction based on the chiral and 1/N_c expansion. Contributions of the Lambda(1116), Sigma(1195), Sigma*(1385) resonances are taken explicitly into account in the pole and regular terms with inclusion of mean-field potentials. The baryon-baryon correlations are incorporated and fluctuation contributions are estimated. Results are applied for K- in neutron star matter. Within our model a second-order phase transition to the s-wave K- condensate state occurs at rho_c \gsim 4 \rho_0 once the baryon-baryon correlations are included. We show that the second-order phase transition to the p-wave K−K^- condensate state may occur at densities ρc∌3Ă·5ρ0\rho_c \sim 3\div 5 \rho_0 in dependence on the parameter choice. We demonstrate that a first-order phase transition to a proton-enriched (approximately isospin-symmetric) nucleon matter with a p-wave K- condensate can occur at smaller densities, \rho\lsim 2 \rho_0. The transition is accompanied by the suppression of hyperon concentrations.Comment: 41 pages, 24 figures, revtex4 styl
    • 

    corecore